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Abstract

Relativistic hydrodynamics became a very useful tool in high-energy physics after
Landau’s application of this theory for explaining data on proton–proton collisions. It’s
later application to heavy ion collisions has been very successful in modeling apparent
collective behaviour of hot matter produced in such collisions.

This work is a part of an effort of the hydro group at University of Warsaw to
create an efficient and robust software tool for solving the equations of relativistic
hydrodynamics, designed to be used by the high-energy physics community. Event-
by-event calculations, which became a popular field of study recently, require many
simulations to be performed. Because of that performance may become a considerable
issue.

As a result of this master’s thesis a number of numerical algorithms dedicated to
solving conservative field equations have been implemented and tested. Especially the
Weno schemes proved to be quite efficient and robust. A variety of slope limiting
methods have been compared with a Musta–Force algorithm.

The implementation is designed to run efficiently on contemporary graphics processing
units, which have many times more computing power compared to ordinary processors.
Benchmarks and comparison to an equivalent implementation of some of these algorithms
in C shown speedups of over 2 orders of magnitude.
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Introduction

Relativistic hydrodynamics became a very useful tool in high-energy physics after
Landau’s application of this theory for explaining data on proton–proton collisions. It’s
later application to heavy ion collisions has been very successful in modeling apparent
collective behaviour of hot matter produced in such collisions.

Today a lot of data is being produced in big particle colliding experiments in
Brookhaven, Geneve, and other places. Developing models of events that occur in such
experiments is a way of understanding the physics behind it. The hydrodynamic model
plays a crucial role as a part of such models that describe the evolution of a fluid-like
state of matter, which can be created in the early stage of the collision. Despite it’s
simplicity, it is the most successful model so far. It is thus important to develop software
for evaluating this model and make effort to keep numerical and resource related issues
out of the picture, as much as that is possible.

This work is a part of an effort to create an efficient and robust software tool for
solving the equations of relativistic hydrodynamics, designed to be used by the high-
energy physics community. Event-by-event calculations, which became a popular field of
study recently, require many simulations to be performed. Because of that performance
may become a considerable issue.

The physical introduction and motivation of this work is presented in chapter 1.
Numerical algorithms used for solving the hydrodynamical equations are described in
detail in chapter 2.

Chapter 3 introduces the technology used for implementing the algorithms, which
makes the code much faster than currently available packages. It is also much cheaper
to implement than a traditional computational cluster.

The following chapters 4 and 5 overviews the code and presents results that it gives
for test problems and comparison with known analytic solutions.
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Chapter 1

Hydrodynamic models of heavy-ion
collisions

1.1 High energy physics background
The current Standard Model [1, 42, 49] of particle physics includes 3 out of 4 fundamental
interactions: the strong, weak and electromagnetic forces, which govern particle dynamics.
It is a theory of coupled quantum fields, which describe interactions between what is
considered elementary particles.

The particles include fermions—1/2–spin particles, which constitute matter. There
are 12 elementary fermions in total: 6 quarks and 6 leptons, grouped together in 3
generations:

quarks leptons
generation charge 2/3 charge −1/3 charge −1 charge 0

I u (up) d (down) e (electron) νe (e-neutrino)
II c (charming) s (strange) µ (muon) νµ (µ-neutrino)
III t (top) b (bottom) τ (taon) ντ (τ -neutrino)

Table 1.1: Fermions of the Standard Model

Where each quark can carry one of three colors—red, green or blue. Additionally,
each of the fermions have a corresponding antiparticle, with the same mass and spin,
and opposite charge and color.

In the Standard Model the neutrinos are massless. However, the experiment shows
that this is not the case. Their masses have been found to be non-zero, although very
small.
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Gauge bosons are another kind of particles included in the Standard Model. In
the perturbative treatment of the theory, they are seen as particles that carry forces—
interaction is exchange of the gauge bosons. Gauge bosons can be grouped by the
interaction that they carry: the photon γ carrying electromagnetic interaction, W± and
Z bosons carrying weak interactions, and 8 gluons g mediating strong interactions (3
colors × 3 anticolors, one of which is a linear combination of the others).

One last particle included in the Standard Model is the recently discovered Higgs
boson. It is an excitation of the Higgs field, which provides a mechanism for particles to
acquire mass.

The Standard Model is formulated in the framework of gauge quantum field theory,
so it has a Lagrangian that controls the kinematics and dynamics of the theory. The
Lagrangian can be divided into 3 sectors:

1. the quantum chromodynamics (Qcd) sector, governing strong interactions;
2. the electroweak sector, which provides an unified view of electromagnetic and weak

interactions;
3. and the Higgs sector.

From the point of view of this thesis, the quantum chromodynamics part is of most
interest, as the processes in heavy ion collision physics are dominated by the strong
interaction.

Quantum chromodynamics qualitatively predicts stages of evolution of a ultra-
relativistic heavy ion collision event (fig. 1.1). The very first are the primary interactions
between partons (quarks and gluons), which lead to a highly excited, non-equilibriated
state of nuclear matter. Hard scattering processes (processes with high momentum
transfer) creates fireballs of hot matter, which by further rescattering cools down and
equilibrates.

After a certain amount of time (estimated to be about 1–2 fm/c) the system aquires
approximate local thermal equilibrium and forms the strongly coupled quark–gluon
plasma (Qgp). This highly exotic state of matter consists of deconfined partons, which
are quasi–free in high momentum, and strongly interacting in low momentum states.

Due to further expansion the Qgp evaporates and enters the hadron gas phase. Here
the interactions become less energetic, and a chemical equilibrium is developed—new
particles are no longer produced. At sufficiently low temperature and density the
interactions stop altogether and particles move away freely. This transition is called the
kinetic freezeout.

The phase diagram of nuclear matter gives another look at these processes. Although
it is not well known, theoretical methods of, most notably, non-perturbative lattice Qcd
have given some insight into it’s structures.
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Facility: SIS NICA SPS RHIC LHC

Laboratory: FAIR GSI JINR CERN BNL CERN

Experiment: HADES, CBM MPD NA61/SHINE STAR
PHOENIX

ALICE
ATLAS
CMS

CMS energy
[GeV/N+N]: 2.3–8.5 4–11 5.1–17.3 7.7–39 5500

14000 p+p

Table 1.2: A summary of high-energy and heavy ions experiments

At very small net baryon density (a constraint that is currently approximately met
only in the largest of colliders), it predicts a phase transformation between the plasma
and hadronic matter, at energy density of about 1 GeV/fm3 and a temperature near
170 MeV [55]. It this regime the transition is cross-over, up until a critical point between
µB = 200 GeV and µB = 500 GeV, where it is expected to turn into a first order phase
transition.

A central point of high energy experiments is to explore this diagram in various
directions in the T − µB plane. Various experiments probe different regions of the
diagram, giving us infomation about properties of matter in that region.

Examples include the NICA project optimized for the highest possible baryon density,
RHIC energy scan that probes the region around the critical point and LHC experiments
which have access to the highest energies achieved in an accelerator so far. A summary
of some of most important experiments is given in table 1.2.

The most relevant observables that could verify this model of a high-energy collision
are:

1. J/Ψ and Y suppresion caused by Debye screening in the plasma,
2. jet (high momentum stream of particles in the transverse plane) suppresion in the

medium,
3. collective motion—the ellipsoidal flow caused by pressure gradients in peripheral

collisions, and higher order harmonics of particle flow,
4. strangeness enhancement,
5. event-by-event fluctuations of various observables,
6. Bose-Einsten correlations, which are a probe for the freezeout process.
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Figure 1.1: Space–time diagram of an ultra-relativistic heavy ion collision event

1.2 Thesis’ motivation
Quantum chromodynamics has been successful in describing strong interaction in hard
processes, ie. those involving large momentum transfer, such as deep inelastic scattering,
or jet production. Small coupling strength in such processes, a result of a property of
Qcd called asymptotic freedom, allow for perturbative treatment of the theory. Despite
great consilience of theoretical predictions with experimental results, we are not able to
reason in the Qcd framework about systems in which soft (low momentum transfer)
processes are dominant.

In heavy-ion collision experiments we largely have to deal with the latter situation.
After the initial partonic collisions, at sufficiently high energies, a dense system of
quarks and gluons is created called the quark gluon plasma (Qgp). In such system
particles are strongly coupled, and perturbative Qcd description falls apart, thus a
different way of modeling Qgp is required. Currently the most successful one is the
hydrodynamical model, which models the Qgp as—in its most basic form—a perfect
fluid [19, 31, 27, 48, 17].

Unfortunately, even the equations of ideal relativistic hydronamics are difficult to
solve analytically, and only a handful of exact solutions are known. To apply it in a
realistic case (with a realistic equation of state and initial conditions) one need to resort
to numerical algorithms.

To minimize time and resources required for numerical treatment of hydrodynamic
systems, the simulation is often done in reduced dimensionality, or in with only several
cells in one of the dimensions (usually rapidity). This approach is motivated by
certain symmetries that are approximately held in heavy ion collisions. Full 3+1D,
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Figure 1.2: Phase diagram of nuclear matter

high resolution simulations are currently still too expensive to regularly perform using
traditional, single threaded software.

This problem can be solved by employing a recently introduced technology of general
purpose computing on graphics processing units (Gpgpu), which is described in chapter
3. Thus the motivation of this thesis is lack a functional, efficient program which would
perform accurate hydrodynamic computations in a reasonable time and low budget,
allowing for good statistics and high spacial and temporal resolution at the same time,
designed for the needs of high energy physics.

1.3 Assumptions
The hydrodynamic model considers Qgp to be continuous, disregarding any kind of
microscopic structure, discrete or otherwise. Evolution is thus described by a set of
differential equations, and variables form fields in the spacetime. Since in heavy–ion
collisions the final state consists of individual, non–interacting particles, this assumption
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is violated at some point and a procedure of translating from hydrodynamic to particle
description (called freezeout) is required.

Furthermore, to justify the description of Qgp by fields of thermodynamical variables
such as temperature and pressure, a local thermal equilibrium must be assumed. Again,
in particle collision physics, the system must be given a certain amount of time to develop
this equilibrium after initial hard processes. Small deviations from the equilibrium can be
modelled using viscous hydrodynamics models, however here only ideal hydrodynamics
will be considered.

1.4 Mathematical description
A relativistic fluid is described by the conservation of the energy–momentum tensor:

∂νT
µν = 0 (1.1)

which, for an ideal fluid, is defined by

T µν = (ε+ p)uµuν − pgµν (1.2)

where ε is the energy density, p is the pressure and uµ is the four–velocity:

uµ = γ(1,v) (1.3)

where v is the velocity vector, γ = 1√
1−v2 is the Lorentz factor, and gµν is the Minkowski

metric tensor:

gµν =


1 · · · 0
−1 ...

... −1
0 · · · −1

 (1.4)

The form of energy–momentum tensor given in eq. 1.2 can be obtained by defining the
energy–momentum tensor in fluid rest frame (v = 0)

T µν0 =


ε · · · 0

p
...

... p
0 · · · p

 (1.5)

and applying the Lorentz transformation:

T µν = Λµ
ρΛν

σT
ρσ
0 (1.6)

Additionally to the energy–momentum conservation, one can introduce a conserved
charge n, obeying the continuity equation:

∂µ(nuµ) = 0 (1.7)
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The charge is usually taken to be baryon density.

We can express eq. 1.2 and 1.7 in a convienient, conservative form

∂tE +∇ · ((E + p)v) = 0
∂tM +∇ · (Mv + pI) = 0 (1.8)

∂tR +∇ · (Rv) = 0

where capital letters E, M and R are respectively energy density, momentum density
and charge density in laboratory frame, given by following relations:

E ≡ T 00 = (ε+ p)γ2 − p
M ≡ T 0i = (ε+ p)γ2v, i = 1, 2, 3 (1.9)
R ≡ nu0 = nγ

To complete this set of equations one also need the equation of state:

p = p(e, n) (1.10)

At this point it should be noted, that all of the physical information about the system
(not including the previously mentioned assumptions) is contained in the equation of
state. The form of this equation is still a matter of active research [46, 70, 5, 51].

1.5 Modeling the initial and final stages of the col-
lision

As previously mentioned, models of realistic high energy heavy ion collisions involve
more than just hydrodynamic expansion [40]. To complete the picture, hydrodynamic
model must be connected to models describing states dominated by other phenomena.

1.5.1 Initial conditions

To start hydrodynamical evolution, an initial state is required as input.

The most basic are parametrizations based e.g. on Glauber-like models in the
transverse plane (see [38] for a review), and Bjorken’s solution in the longitudinal
direction.

Other approaches involve models based on color glass condensate (Cgc), which
describe a Lorentz contracted and slowed down, fast moving particle; pQcd+saturation
model [15], or the string rope model [35].

These models describe a smooth, averaged initial state. However, since the hy-
drodynamic equations are nonlinear, solution with an averaged initial state is not
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equivalent to the average of solutions with fluctuating initial conditions. Because of this,
event-by-event calculations became a major point of interest.

Fluctuating initial conditions can be obtained using e.g. Monte–Carlo Glauber [2, 8]
or Cgc, NeXus [14], and models like Epos [45] or UrQmd [4]. They have been shown
to improve the behaviour of elliptic flow especially in high pT and large |η| regions, and
produce other non-trivial effects in agreement with the data [24, 9, 28].

1.5.2 Hadronization, freezeout, final state interactions

Hadronization is a method of recovering hadron distributions. The quark recombination
models are best candidates for describing this process [16]. In general, they assume
a universal distribution of quarks and then project quark states onto hadronic states
either instantaneously, or by dynamic coalescence [40].

Second step is the particle emmision, or freezeout. An overview of freezeout techniques
is presented in [20]. The most popular method is a sudden freezeout, which assumes
that there is a sudden change from hydrodynamical state into free particles at some
point, usually a constant temperature or proper time hypersurface [63] (for a more
sophisticated choice of freezeout hypersurface see e.g. [29]). More realistic, continuous
emmision models are also considered. Therminator [34], which implement sudden
freezeout, also take into account resonance decays.

To account for the interactions between “free” particles obtained by the freezeout
procedure (which may not interact strongly, but surely can electromagnetically), the
UrQmd [4] software is often used [41].
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Chapter 2

Numerical algorithms for
relativistic hydrodynamics

2.1 Solving the hydrodynamic equations
Equations of relativistic hydrodynamics (2.1) can be written in a shortened form:

∂U

∂t
+ ∂F (U)

∂x
+ ∂G(U)

∂y
+ ∂H(U)

∂z
= 0 (2.1)

where U = (E,Mx,My,Mz, R) is a vector of conserved quantities in laboratory rest
frame, E is the energy density, Mi is the momentum density in the i-th cartesian
coordinate and R is a conserved charge density (e.g. baryon number). F,G,H are
vectors of fluxes of those quantities in x, y, z directions, defined as:

F (U) =


(E + p)vx
Mxvx + p
Myvx
Mzvx
Rvx

 , G(U) =


(E + p)vy
Mxvy

Myvy + p
Mzvy
Rvy

 , H(U) =


(E + p)vz
Mxvz
Myvz

Mzvz + p
Rvz

 (2.2)

where v is the velocity and p is pressure, defined by an equation of state: p = p(e, n). e
and n are energy and charge density in fluids rest frame (i.e. in a frame where velocity
vanishes, v = (0, 0, 0)).

In numerical applications, all continuous fields have to be represented in a finite
number of degrees of freedom, e.g. on a fixed numerical grid. In our program we use
a finite–difference scheme on a cartesian grid. Since non–conservative methods (i.e.
methods based on non–conservative variables) have been show to fail (not converge to a
correct solution) if a shock wave is present in the solution [30], a conservative method is
used.
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2.2 Time integration
For time propagation the standard Runge–Kutta methods were employed [10]. For
numerical stability only TVD (total variation diminishing) methods are used.

In general, a Runge–Kutta method for eq. 2.1 can be written in the form:

U (i) =
i−1∑
k=0

(αikU (k) + ∆tβikL(U (k))), i = 1, . . . ,m

U (0) = U (n) (2.3)
U (m) = Un+1

where the upper index without parentheses denotes the time step, upper index denotes
integration step, L is a numerical recipe to calculate the negative flux gradient in 2.1
and α, β are constant coefficients given for a particular method.

For second order accuracy the following method is used:

U (1) = Un + ∆tL(Un)

Un+1 = 1
2(Un + U (1) + ∆tL(U (1))) (2.4)

and for third order accuracy:

U (1) = U (n) + ∆tL(Un)

U (2) = 3
4U

n + 1
4U

(1) + 1
4∆tL(U (1)) (2.5)

Un+1 = 1
3U

n + 2
3U

(2) + 2
3∆tL(U (2))

It can be seen, that apart from additional computational cost due to more evaluations
of L, these methods introduce the need for an additional storage register for each of
the conserved variables. As this can be an issue for large resolution simulations, a low
storage version of the third order method can be used.

2.3 Method of lines
The two standard ways of solving 2.1 numerically are the dimensional splitting approach,
and the method of lines. Derivation of dimensional splitting methods are based on
Taylor series expansions and may give incorrect results for discontinuous solutions [59],
thus the latter was chosen. For a three dimensional problem, such a scheme reads:

Un+1
i,j,k = Un

i,j,k + ∆t
∆x

(
Fi− 1

2 ,j,k
− Fi+ 1

2 ,j,k

)
+ ∆t

∆y
(
Gi,j− 1

2 ,k
−Gi,j+ 1

2 ,k

)
+ ∆t

∆z
(
Hi,j,k− 1

2
−Hi,j,k+ 1

2

)
(2.6)
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where Un
i , j, k represents a conserved quantity at the discrete time tn; ∆t and ∆x, ∆y,

∆z are time and space steps, respectively, and Fi− 1
2 ,j,k

. . . Hi,j,k+ 1
2
are numerical fluxes

through cell boundaries.

The central point of a particular scheme is the construction of intercell fluxes (Fi− 1
2 ,j,k

etc.). There are two distinct approaches for this problem: the upwind and centered
schemes.

Main feature of upwind schemes is that they explicitly exploit information about
wave propagation contained in the equations, usually by solving a one–dimensional
Riemann problem locally. Accuracy of such schemes is highly dependent on the choice of
a particular Riemann solver, which should ideally be complete (i.e. take all characteristic
fields present in the exact solution into account).

On the other hand, centered methods do not solve the Riemann problem directly,
and therefore are usually simpler and more general, at the cost of it’s accuracy (given
that there is a complete Riemann solver available).

2.4 Musta algorithm
In order to obtain a general and accurate algorithm, we use a hybrid Musta (multi–
stage) approach [60, 59, 57]. It utilizes a centered flux in a predictor–corrector loop,
solving the Riemann problem numerically, i.e. without using a priori information about
waves.

The algorithm, in a one dimensional case, is as follows:

1. In order to calculate flux Fi+ 1
2
we introduce auxiliary variables U (l)

L and U (l)
R and

their fluxes F (l)
L and F (l)

R .

2. Set U0
L = Ui, U0

R = Ui+1.

3. Calculate F (l)
i+ 1

2
using a centered flux, U (l)

R , U (l)
L , F (l)

L and F
(l)
R . If l reached a

predefined value, stop.

4. Solve Riemann problem locally:

U
(l+1)
L = U

(l)
L −

∆t
∆x

(
F

(l)
i+ 1

2
− F (l)

L

)
, U

(l+1)
R = U

(l)
R −

∆t
∆x

(
F

(l)
R − F

(l)
i+ 1

2

)
(2.7)

5. Go back to step 3.

One drawback of using such algorithm is that it’s numerically more expensive than other,
more conventional algorithms, for instance Shasta (Sharp And Smooth Transport
Algorithm) [7].
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2.5 Force flux
As a centered flux we used the Force (First order centered) scheme:

F force
i+ 1

2
= 1

2
(
F lw
i+ 1

2
+ F lf

i+ 1
2

)
(2.8)

where F lw
i+ 1

2
is the Lax–Wendroff type flux (in terms of Musta auxilliary variables):

F lw
i+ 1

2
= F

(
1
2(UL + UR)− 1

2
α∆t
∆x (FR − FL)

)
(2.9)

and F lf
i+ 1

2
is the Lax–Friedrichs type flux:

F lf
i+ 1

2
= 1

2(FL + FR)− 1
2

∆x
α∆t(UR − UL) (2.10)

In three–dimensional case α = 3, but other values may also be considered.

2.6 Muscl–Hancock scheme
To achieve second order accuracy in space, we extend our algorithm with Muscl-
Hancock scheme. The basic idea of this scheme is to use more cells to interpolate
inter–cell values and evolve them half a time step. The algorithm is:

1. Replace cell average values Un
i by a piece–wise linear function inside i-th cell:

Ui(x) = Un
i + (x− xi)

∆x ∆i (2.11)

In the local coordinates the points x = 0 and x = ∆x correspond to boundaries
of the cell xi− 1

2
and xi+ 1

2
. The values at these points are UL

i = Un
i − 1

2∆i and
UR
i = Un

i + 1
2∆i.

2. Propagate UL
i and UR

i by a time 1
2∆t:

ŨL
i = UL

i + 1
2

∆t
∆x(F (UL

i )− F (UR
i )) + 1

2
∆t
∆x(G(UL

i )−G(UR
i ))

+1
2

∆t
∆x(H(UL

i )−H(UR
i ))

ŨR
i = UR

i + 1
2

∆t
∆x(F (UL

i )− F (UR
i )) + 1

2
∆t
∆x(G(UL

i )−G(UR
i ))

+1
2

∆t
∆x(H(UL

i )−H(UR
i ))
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3. Use ŨR
i and ŨL

i+1 as U0
L and U0

R in Musta to get Fi+ 1
2
.

A simple choice for the slope ∆i in 2.11 is:

∆i = (Un
i − Un

i−1) (2.12)

which indeed results in a second–order accurate algorithm. However, as predicted by
Godunov’s theorem, it has an unpleasant property of producing spurious oscillations in
the vicinity of strong gradients.

2.7 Slope limiting
To solve this issue, a number of flux limiting and slope limiting methods has been
proposed [26, 56, 6]. We employed a slope limiting method: instead of ∆i as in 2.12 we
use ∆̃i = ξ(ri)∆i in 2.11, where ξ is called the slope limiter and ri = Ui+1−Ui

Ui−Ui−1
.

Then one can calculate UL
i and UR

i using the following relations

UL
i = Ui −

1
2ξ(1/ri)(Ui+1 − Ui), UR

i = Ui + 1
2ξ(ri)(Ui − Ui−1)

There are a number of possible choices for ξ, each with it’s own characteristics and
features. One possibility is the Minbee limiter:

ξmb(r) = max(0,min(1, r))

and another, called Superbee:

ξsb(r) = max(0,min(2r, 1),min(r, 2))

In fact these are the two most extreme slope limiters, Minbee being the most dissipative
and Superbee the least. Between them is the admissible region for second order total
variation diminishing limiters.

In the tests also the van Albada and van Leer limiters were used:

ξva(r) = r2 + r

r2 + 1

ξvl(r) = r + |r|
1 + |r|

The limiters are designed to reduce the scheme to first order accuracy near shocks,
and keep higher order in smooth areas. Introducing non–linearity in this way reduces
spurious oscillations and retains good accuracy of the solution.
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Here it should be stressed, that results are very sensitive to the choice of slope in 2.12
and the slope limiter—both the formula for ξ, and the way that it is applied. Here the
procedure was applied for each variable separately, but in general it could be applied
any other way (e.g. one slope limiter could be chosen for all the variables). There is no
general procedure in a multi-dimensional and non-scalar case, and some experimentation
may be necessary for both a particular system of equations and maybe even a particular
problem. A comparison of various slope limiters is be given in section 5.1.1.

One should also take care that the resulting scheme is symmetric, or the results on
the left will differ from these on the right despite initial symmetry in the system.

2.8 The Weno scheme
Due to high numerical cost and complexity of the Musta algorithm, the Weno scheme
was also implemented [52, 3, 53, 58, 50, 47, 69]. It is a method of approximating the
value of a function h

(
x+ ∆x

2

)
, where h is defined implicitly as:

h̄i = 1
∆x

xi+∆x/2∫
xi−∆x/2

h(ξ) dξ (2.13)

in our context the average h̄i can either be the cell average Ūi for a finite volume method,
or cell flux F (Ui) for a finite difference method. The output is then the left and right
intercell values U±

i+ 1
2
or the numerical flux Fi+ 1

2
, respectively.

In this work the latter was chosen, because finite volume methods become complex in
multi dimensional case, and their main feature—applicability to non-uniform meshes—is
irrelevant when simulating heavy-ion collisions.

This however comes at a cost—this scheme only works upwind, that is for fluxes
with non-negative Jacobian eigenvalues, that is

∂F

∂U
> 0 (2.14)

which is typically not the case.

To get around this problem a procedure called flux splitting is required. One divides
the flux into F+ and F−, such that

F = F+ + F− (2.15)

and
∂F+

∂U
> 0, ∂F−

∂U
6 0. (2.16)

The procedure is then applied separately to both of them, mirrored with respect to the
point i+ 1

2 in the negative case, and the results are added together.

17



The most common method for flux splitting is Lax-Friedrichs flux splitting:

F± = 1
2(F ± αU) (2.17)

where α = max
U

∣∣∣∂F
∂U

∣∣∣ is the maximum Jacobian eigenvalue on the current stencil.

Finding these eigenvalues is difficult in 3 dimensional case with a conserved current—
with a total of 5 variables, there is a 5th order polynomial to solve. Unfortunately, using
a numerical algorithm in this case would likely kill the performance beyond usefulness.
The derivation of the Jacobian is available in appendix B.

As a stopgap, I set α = 1, which is the maximum possible speed in the system, with
decent results (see chap. 5).

A useful thing to do would be to implement the proper eigenvalues in case without
any additional conserved charge. Then one could also make the calculations in the
characteristic variables, which should make the algorithm more robust.

The algorithm itself is an extension of the Eno scheme. The idea of the Eno scheme
is to choose the smoothest stencil from a set of candidates to avoid oscillations near
shocks, and use it to approximate the intercell value.

There are several drawbacks to this method. Firstly, in the smooth areas, choosing
only one scheme “wastes” the others, which could be used to get a higher order scheme.
Secondly, it takes many logical statements to choose the stencil so the efficiency on the
Gpu would be decreased.

In theWeno scheme instead using one of the stencils, the idea is to use a combination
of all of them. Each of the stencils is assigned a weight, so that stencils containing
shocks contribute less than the smooth ones. This way the non-oscillatory feature is
kept and the scheme has higher order in smooth areas.

To get a 2r − 1 order accurate scheme r stencils of size r are used to approximate
the value in point i+ 1

2 :

Sk = {i− (r − 1) + k, . . . , i+ k}, k = 0 . . . r − 1 (2.18)

E.g. for r = 3:

S0 = {i− 2, i− 1, i}, S1 = {i− 1, i, i+ 1}, S2 = {i, i+ 1, i+ 2} (2.19)

Then for each stencil Sk an approximation of Fi+ 1
2
, Fk, is computed. Again for r = 3:

F0 = 2Fi−2 − 7Fi−1 + 11Fi
F1 = −Fi−1 + 5Fi + 2Fi+1 (2.20)
F3 = −Fi+2 + 5Fi+1 + 2Fi

18



Each stencil also gets it’s smoothness indicator βk:

β0 = 13
12(Fi−2 − 2Fi−1 + Fi)2 + 1

4(Fi−2 − 4Fi−1 + 3Fi)2

β1 = 13
12(Fi−1 − 2Fi + Fi+1)2 + 1

4(Fi−1 − Fi+1)2 (2.21)

β2 = 13
12(Fi − 2Fi+1 + Fi+2)2 + 1

4(3Fi − 4Fi+1 + Fi+2)2

The final approximation Fi+ 1
2
is then given by:

Fi+ 1
2

=
r−1∑
i=0

ωiFi (2.22)

where ωi = αi

α0+...+αr−1
, αi = di

(ε+βi)2 and di are the linear weights, for r = 3:

d0 = 1
10 , d1 = 3

5 , d2 = 3
10 (2.23)

To avoid division by 0, the ε in the definition of αi is taken to be a numerically small
number compared to 1, e.g. 10−6. Parameters for other values of r can be found in the
literature. In this work 5th and 7th order schemes (r = 3, 4) were implemented.

Computed intercell fluxes 2.22 can then be substituted into equation 2.6.

2.9 Calculationg the hydrodynamic flux
To complete the chapter about numerical methods for relativistic hydrodynamics, one
more detail still must be dealt with. It is easy to change from rest frame variables and
velocities to conserved variables used in the integration. The inverse transformation,
however, is not trivial.

It is needed though each time we compute the flux, since the equation of state is
defined as a function of e and n, and not E and R. As in [48], we can invert equations
1.9 and get

e = E −Mv (2.24)
n = R

√
1− v2 (2.25)

v = M

E + p(e, n) = M

E + p(E −Mv,R
√

1− v2)
(2.26)

and then use a numerical algorithm to solve the fixed point equation 2.26 for v. For
this purpose we used an algorithm proposed by Sławomir Biegluk, a former student of
Warsaw University of Technology.
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Chapter 3

General purpose computing on
graphics processing units

3.1 Introduction to Gpgpu computing
Modern graphics processing units posess an impressive computational power commonly
used in 3D computer graphics. Exploiting this capacity for general use has been an
active area of research for many years, but only since recently it has been possible
on consumer grade hardware, using well developed software frameworks and libraries
[11, 39]. Today this technology is being applied in various research areas with great
success [25, 23, 62, 44, 32, 66, 43].

Processing graphics consists mainly of applying point-wise shaders, i.e. functions
that apply pixel effects, transform geometry and compute lightning; to a massive amount
of data. These problems can be described as embarassingly parallel problems, a term
that indicates that they can be easily divided into smaller problems, that can be solved
independently of each other. Gpus are thus naturally equipped with many multi-core
microprocessors executing the kernel (a program) in unison, each on different input
data.

An important subclass of the embarassingly parallel problems are the stencil com-
putations. Often the function that will be applied point-wise also requires information
about the neighbourhood of the point—e.g. when convoluting an image with a small
kernel, a procedure that is commonly used in image processing. More importantly for
this thesis, the process of numerically solving the partial differential equations also
belong to this class.

Fig. 3.1 shows the motivation to invest in graphics processing units. On the vertical
axis is a measure of raw number crunching power, the theoretical achieveable bilions of
floating point operations per second. The difference is already vast in favor of Gpus
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and increasing. Already now the investment is affordable, building a cluster of Gpus is
going to be much cheaper than building a cluster of equivalent computing power using
Cpus.

picture taken from [21]

Figure 3.1: Comparison of theoretical giga-floating operations per second for gpus and
cpus

3.2 Gpu architecture
Fig. 3.2 shows an overview of the execution of host and gpu code (on the left), and
types and scope of memory that is available (on the right).

The kernel is executed by the library on a grid of threads, which is divided into
blocks. The importance of this division lies in a fact that threads in a block run
concurrently on the device, while blocks themselves may execute sequentially. Because
of that, synchronization between blocks is not possible.

From the user’s point of view, the framework provides several global variables which
can be used inside device (gpu) code which indicate “current” thread’s index in the
block, block’s index in the whole grid and grid dimensions. Using these indices one can
decide what should a thread do (e.g. compute memory address and fetch the data).

Another thing to point out in this section are the memory types available to device
code. There are three basic types of memory storage:
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picture taken from [21]

Figure 3.2: Overview of gpu architecture

registers Graphics cards usually have about 16–64 thousands of registers per multi-
processor. This number is divided by the number of threads executing on the
multiprocessor, and typically a single thread has about a dozen registers allocated
for use. This is the fastest and the most limited in quantity type of memory
available. It is therefore of great importance to the efficiency that the program is
optimized in terms of register usage.

shared memory Shared memory is an on-chip type of memory which is allocated per
block. Typically a multiprocessor will have about 14–48 KB of memory of this
kind available. Due to the per block allocation, this memory can only be accessed
by threads within a particular block. It is often described as a manual cache and
as such can provide significant optimization opportunities.

device memory This is the main bulk storage memory for storing large amount of
data. Access to it is the slowest, however with the right access patterns it is
possible to make a coalesced read or write operation. There are several ways to
manage this memory pool, each tailored for a particular use case:

local memory this address space is per-thread, for storing intermediate calcula-
tion results that does not fit elsewhere. It is the only type of device memory
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that is not globally shared by all threads;
global memory is the generic address space for exchanging data between the

host and the device;
texture memory is a read-only address space optimized for spacially localized

access;
surface memory similiar texture memory, but supports both read and write

operations, available on newer devices;
constant memory immutable read-only memory, optimized for simultaneous

access to one location.

3.3 Cuda programming framework
The Cuda platform [21, 64, 36, 65, 68, 67] provides a compiler, a set of developement
tools for writing, debugging and optimizing the code, and some numerical libraries for
basic tasks.

The language in which device code is written is a subset of C++, with some
restrictions regarding the usage of pointers or recursion, especially in earlier versions of
Cuda.
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Chapter 4

Implementation of hydro program

4.1 Overview
The code, my contribution to which is the product of this thesis, is written in C++
as a set of classes that implement the algorithms described in chapter 2, data types
to operate on and configuration tools. A program for performing the simulation and
collecting results is also provided.

In this chapter the code functionality and structure will be briefly outlined. Because
the code is still being developed, some of the technical details will likely change in future.
Sample pieces are presented in appendix A. For more details, refer directly to the source
code.

4.2 Input and output
The input consists of the configuration file with all simulation parameters except the
algorithm of choice, dimension and the equation of state, which are fixed during the
compilation phase and can be specified in the Makefile.

The output, apart from the final state of the fluid, can consist of a set of sections,
projections, total system energy and wall clock time taken from intermediate time steps.

4.2.1 Hydrodynamic fields data

The state of the system is stored as 5 numbers per lattice cell—the energy density,
conserved charge density, and 3 momenta density; all in laboratory reference frame.

The disk representation of this data is a plain text file with 5 columns of floating
point numbers (energy, charge, x, y, and z momentum), separated by a space, with x
being the fastest changing dimension and z the slowest. The files also contain a one line

24



header with information about the lattice size, which for a x = 100, y = 120, z = 80
lattice would look like this:

# 100 120 80

4.2.2 Parameters

Run-time parameters are given to the program in a configuration file written in a simple
Ini format. These include lattice dimensions, time step, number of iterations, type of
border conditions and some algorithm specific parameters. An example configuration
file for a simulation using the Musta-force algorithm is shown below.

[main]
steps = 500
name = simulation1

[fluid]
xDim = 128
yDim = 128
zDim = 128
dx = 0.02
dy = 0.02
dz = 0.02
dt = 0.005
epsilon = 1e-6
mustaSteps = 4
border = copy

[files]
in = initial.dat
out = output.dat

4.2.3 Equation of state

The equation of state is an arbitrary function of the energy density and conserved charge
density in the rest frame. It has to be compiled to be executed in the device code (the
function signature is float eos(float e, float n), where the first argument is the energy
and second the charge and the function returns pressure).

The expression for pressure can be specified in the Makefile, or directly in the source
code if a more complicated procedure is required. Currently a table lookup equation of
state is not supported.
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4.3 Gpu–side code
For each lattice cell a number of neighbouring cells must be included in the computation.
The kernel could simply read all required data from the global memory, but since
operations on the global memory are expensive, some method of caching is necessary.
Two different memory access patterns have been implemented for comparison. Both of
them will be described in this section.

4.3.1 Shared memory version

In this version the shared memory is used as an explicit cache for holding lattice cell
data. The threads are mapped to the lattice one-to-one, omiting the lattice border. The
first threads in the block also load the halo around the block.

The situation is depicted on fig. 4.1 in a simplified, one-dimensional case with a
block of size 4 and one-cell border.

i i+1

shared memory cache size

cache and compute

cache only
block size

threads lattice

Figure 4.1: Schematic view of the threads–lattice mapping of shared memory caching
and computation.

In the full 3 dimensional case the mapping takes place in the x − y plane—the
thread grid is 2 dimensional, and each thread loops over the z dimension. Necessary
neighbouring cells in the z dimension are kept and rotated in the registers. This way
both the usage of registers (less threads in a block) and shared memory is reduced.

4.3.2 Surface memory version

Using the surface memory is rather easier than managing manual cache. All threads just
read the data they require from the surface object and caching is done automatically in
the texture cache.

A great advantage of this is that we are not limited by the shared memory size—the
stencil can have arbitrary size and shape. This feature is crucial if a very high order
scheme is desired. It also lowers the register pressure caused by caching the z dimension.

The mapping is similiar as in the shared memory version—the thread grid is 2
dimensional, and each thread loops over the third dimension.
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Chapter 5

hydro verification and performance
analysis

5.1 Test problems
To verify the simulation reliability, the algorithms were tested against three analytic
solutions to relativistic hydrodynamics. For each of them plots of chosen variables
are presented together with the theoretical curves. The tested algorithms are Musta–
Force with three different slope limiters (Minbee, Superbee, and van Albada) and
without one, and two Weno schemes (5th and 7th order accurate). Third order accurate
Runge–Kutta method was used for time integration.

5.1.1 Sod shock tube

First of the tests is a solution to the Riemann problem. This is a one dimensional
solution, whose initial state are two regions of stationary fluid with a charge and pressure
discontinuity in the middle.

When the discontinuity is big enough, a relativistic shock wave appears in the
solution. The initial conditions (given in table 5.1 together with other parameters) were
chosen to produce such a shock wave. The solution is divided into waves: the shock
wave, the contact discontinuity, and the rarefaction wave, see fig. 5.1.

The results are presented in figs. 5.2–5.22.

For Musta–Force, a variety of slope limiters was tested. From the least diffusive
cases:

no limiter Oscillations at the contact points of waves are becoming visible. The shock
is also smeared out from the left side.
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Figure 5.1: An overview of the solution of the relativistic Riemann problem (picture
taken from [37])

SUPERBEE The most compressive limiter. The shocks are sharpened, but additional
oscillations are introduced. Also the overshoot clearly visible in the velocity plot
is enhanced.

van Leer Here the shocks are still sharp and the oscillations are gone, but the overshoot
is still significant.

van Albada This limiter trades some sharpness for better rendition of the velocity
profile.

MINBEE Now the overshoot is almost entirely gone, at the cost of some visible
diffusion, especially in the shock wave region.

To sum up, van Albada and the Minbee limiter seem to be closest to the analytic
solution, and those two will be used in rest of the tests.

Weno schemes seem to fare much better. The shock wave is sharper and more
accurate. Also the overshoot is nicely supressed, especially in the 7th order scheme. The
7th order scheme though develops some slight oscillations in the contact plateau region
(best visible on the velocity plot).
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grid size grid spacing time step pL pR ρL ρR
500 0.02 0.005 131

3 0 10 1

Table 5.1: Parameters of the Sod shock tube simulations
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Figure 5.2: Sod shock tube, energy density in local coordinates, Musta-Force with
no limiter.
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Figure 5.3: Sod shock tube, charge density in local coordinates, Musta-Force with no
limiter.
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Figure 5.4: Sod shock tube, velocity, Musta-Force with no limiter.
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Figure 5.5: Sod shock tube, energy density in local coordinates, Musta-Force with
Minbee limiter.
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Figure 5.6: Sod shock tube, charge density in local coordinates, Musta-Force with
Minbee limiter.
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Figure 5.7: Sod shock tube, velocity, Musta-Force with Minbee limiter.
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Figure 5.8: Sod shock tube, energy density in local coordinates, Musta-Force with
van Albada limiter.
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Figure 5.9: Sod shock tube, charge density in local coordinates, Musta-Force with
van Albada limiter.
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Figure 5.10: Sod shock tube, velocity, Musta-Force with van Albada limiter.
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Figure 5.11: Sod shock tube, energy density in local coordinates, Musta-Force with
van Leer limiter.

33



0
1
2
3
4
5
6
7
8
9
10

-5 -4 -3 -2 -1 0 1 2 3 4 5

ch
ar
ge

de
ns
ity

[G
eV

/f
m

3 ]

distance from center [fm]

shock tube from 0 fm to 4 fm, p = 0.4(e− n)

simulation
analytic

Figure 5.12: Sod shock tube, charge density in local coordinates, Musta-Force with
van Leer limiter.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

-5 -4 -3 -2 -1 0 1 2 3 4 5

ve
lo
ci
ty

[c−
1 ]

distance from center [fm]

shock tube from 0 fm to 4 fm, p = 0.4(e− n)

simulation
analytic

Figure 5.13: Sod shock tube, velocity, Musta-Force with van Leer limiter.
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Figure 5.14: Sod shock tube, energy density in local coordinates, Musta-Force with
Superbee limiter.
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Figure 5.15: Sod shock tube, charge density in local coordinates, Musta-Force with
Superbee limiter.
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Figure 5.16: Sod shock tube, velocity, Musta-Force with Superbee limiter.
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Figure 5.17: Sod shock tube, energy density in local coordinates, 5th order Weno.
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Figure 5.18: Sod shock tube, charge density in local coordinates, 5th order Weno.
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Figure 5.19: Sod shock tube, velocity, 5th order Weno.
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Figure 5.20: Sod shock tube, energy density in local coordinates, 7th order Weno.
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Figure 5.21: Sod shock tube, charge density in local coordinates, 7th order Weno.
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Figure 5.22: Sod shock tube, velocity, 7th order Weno.

39



5.1.2 Hubble–like expansion

This is a three dimensional, spherically symmetric solution of matter that expands
uniformly. The velocity is proportional to distance from the center v = ~r

t
. The energy

density is given by:

e = e0

(
τ0√
t2 − r2

)3(1+c2
s)

(5.1)

In our case the solution is well defined for r < t. For the test we set r < t − 0.5 fm
and put vacuum (e = v = 0) outside this region. This means that the solution is exact
only in the central area—on the periphery the matter will expand into vacuum, so
a rarefaction wave is expected. The solution uses ultra relativistic equation of state
p = c2

se.

Initial parameters are given in table 5.2.

grid size grid spacing time step e0 c2
s τ0 t0

1203 0.1 0.02/0.03∗ 1 1
3 4 2

∗0.02 for Weno, and 0.03 for Musta-Force simulations

Table 5.2: Parameters of the Hubble–like expansion simulations

The results are presented in figs. 5.23–5.34. Shown are y = z = 0 sections through
the three dimensional solution.

The results are similiar as in previous test. All of the schemes were accurate in the
middle region, and Weno schemes have shown less diffusion than Musta–Force on
the sides.
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Figure 5.23: Hubble–like expansion, energy density in local coordinates, Musta-Force
with Minbee limiter.
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Figure 5.24: Hubble–like expansion, energy density in laboratory coordinates, Musta-
Force with Minbee limiter.
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Figure 5.25: Hubble–like expansion, velocity, Musta-Force with Minbee limiter.
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Figure 5.26: Hubble–like expansion, energy density in local coordinates, Musta-Force
with van Albada limiter.
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Figure 5.27: Hubble–like expansion, energy density in laboratory coordinates, Musta-
Force with van Albada limiter.
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Figure 5.28: Hubble–like expansion, velocity, Musta-Force with van Albada limiter.
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Figure 5.29: Hubble–like expansion, energy density in local coordinates, 5th order
Weno.
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Figure 5.30: Hubble–like expansion, energy density in laboratory coordinates, 5th order
Weno.
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Figure 5.31: Hubble–like expansion, velocity, 5th order Weno.
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Figure 5.32: Hubble–like expansion, energy density in local coordinates, 7th order
Weno.
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Figure 5.33: Hubble–like expansion, energy density in laboratory coordinates, 7th order
Weno.
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Figure 5.34: Hubble–like expansion, velocity, 7th order Weno.
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5.1.3 Ellipsoidal flow

The last test uses the ellipsoidal solutions [54], which is a generalized Hubble–like
solution (with velocity proportional to ~r), a gaussian profile and vanishing pressure
p = 0. The variables are given by the following equations:

e = Ce∏
i
(t+ Ti)

exp
(
−b2

e

t2

τ 2

)
(5.2)

n = Cn∏
i
(t+ Ti)

exp
(
−b2

n

t2

τ 2

)
(5.3)

~v =
(
a1(t)x
t

,
a3(t)y
t

,
a2(t)z
t

)
(5.4)

where τ =
√
t2 −∑

i
a2
ix

2
i , ai ≡ ai(t) = t/(t + Ti) and Ce, Cn, be, bn, Ti are constants;

i = 1, 2, 3.

Initial parameters are given in table 5.3.

grid size grid spacing time step t0 Ce Cn be bn T1 T2 T3
1203 0.1 0.02 2 2 0.75 1 1 0.4 0.6 0.8

Table 5.3: Parameters of the ellipsoidal flow simulations

The results are presented in figs. 5.35–5.42. Shown are y = z = 0 sections through
the three dimensional solution.

Suprisingly, Musta–Force had some difficulties in this test. With both slope
limiters it developed strong oscillations in the solution. This is rather unfortunate,
since this solution despite being pressureless, resembles the most a physically relevant
situation.

On the other hand, the Weno schemes had no such difficulties. The results almost
perfectly fit the analytical solution, except a little velocity disturbance on the edge of
the matter region.

A two dimensional section comparing both schemes is shown on fig. 5.43. Musta–
Force shows clear anisotropy—the oscillations are aligned with x and y axes. This
effect is absent in the case of Weno scheme. In fact such anisotropy has been observed
only in this test case.

5.2 Conservation of energy
Plots of total energy on the lattice are shown on fig. 5.44.
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Figure 5.35: Ellipsoidal flow, energy density in local coordinates, Musta-Force with
Minbee limiter.

In the case of ellipsoidal flow 7th order Weno performs the best with a deviation of
the order of 0.01%. Slightly worse is Musta-Force, getting up to an 0.04% excess of
energy. Here the 5th order Weno performed the worst, sliding down 0.1%.

In the hubble-like test the situation is somewhat different: here 5th order Weno
performs best with about 0.03% deviation. Musta-Force is second again with a
dropdown about 2 times as big. 7th order Weno is the worst, it’s deviation gets up to
0.3%.

Overall the energy behaviour, despite being somewhat unpredictable, is mostly good.
If, however, it becomes a problem, one should switch to a different, better behaving
time integration scheme.

5.3 Performance analysis
A detailed analysis of the performance is discussed in related works [12, 13]. In this
section I will present a summary of these results.

For grids bigger than about 643 the Gpu version turned out to be more than 200
times faster than an equivalent algorithm executed on the Cpu (comparison was done
using Intel Pentium B960, a 2.2 GHz processor and a NVIDIA GeForce 610 graphics
card with 1 GB of memory and Compute Capability 2.1).

A comparison of shared memory and surface memory implementations was also
conducted. Although in principle the shared memory is faster, the results favor the
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Figure 5.36: Ellipsoidal flow, velocity, Musta-Force with Minbee limiter.

surface memory version. It is mostly due to reduced register pressure—kernels that run
out of registers put some of the intermediate data in local memory (this situation is
called register spilling). This has great effect on the performance, and as the profiling of
the application has shown, in the shared memory version some register spilling indeed
takes place, making the execution speed of both versions comparable.

Apart from lower register usage, the surface version also shows bigger occupancy (a
statistic that tells to what extent in average the cores are being used), and a slightly
smaller branching (a measure of divergence between threads running concurrently, which
cause serialization).

5.3.1 Algorithm performance comparison

During the simulations durations of the kernel execution were measured. In table 5.4 the
averages of kernel execution time for the ellipsoidal flow test are given. The simulations
were performed on a 1203 grid.

Due to it’s simplicity, the finite difference Weno scheme, despite being higher order,
was about 54% and 41% faster than Musta–Force for 5th and 7th order respectively.
The Musta–Force simulation was performed with 4 Musta iterations, as in all the
tests.
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Figure 5.37: Ellipsoidal flow, energy density in local coordinates, Musta-Force with
van Albada limiter.
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817 375 479

Table 5.4: Average time of kernel execution for different schemes, given in milliseconds
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Figure 5.38: Ellipsoidal flow, velocity, Musta-Force with van Albada limiter.
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Figure 5.39: Ellipsoidal flow, energy density in local coordinates, 5th order Weno.
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Figure 5.40: Ellipsoidal flow, velocity, 5th order Weno.
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Figure 5.41: Ellipsoidal flow, energy density in local coordinates, 7th order Weno.
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Figure 5.42: Ellipsoidal flow, velocity, 7th order Weno.
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Figure 5.43: Ellipsoidal flow, energy density in local coordinates.
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Figure 5.44: Conserservation of energy for Musta-Force and Weno schemes
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Summary

As a result of this master’s thesis a number of numerical algorithms dedicated to solving
conservative field equations have been implemented and tested. Especially the Weno
schemes proved to be quite efficient and robust. A variety of slope limiting methods
have been compared with a Musta–Force algorithm.

The implementation is designed to run efficiently on contemporary graphics processing
units, which have many times more computing power compared to ordinary processors.
Benchmarks and comparison to an equivalent implementation of some of these algorithms
in C shown speedups of over 2 orders of magnitude.

The code as is (without sources and viscosity), when coupled with software for other
states of matter, could be used to simulate heavy ion collision events in energy scales
where viscosity does not play a major role (e.g. RHIC energies). Thanks to it’s speed,
event-by-event analyses would benefit the most from it’s use.

It could also be useful to study jet interactions with the medium, especially with
the addition of sources (which should not pose a big problem and are expected to
be implemented soon). Modern graphics cards have enough memory to conduct high
resolution simulations, which are the ones with highest speedup.

Implementation of viscosity could strongly influence the efficiency—it would require
several additional registers per lattice cell, and register spilling would likely occur. With
some clever use of shared memory though one may be able to reduce the register spilling
and maintain the speedup.

There are still a lot of things that could be done to extend this code. It would be
interesting to combine both schemes, i.e. use Weno in a finite volume setting instead
of Muscl—perhaps with operator splitting for simplicity, and then use Musta-Force
as the Riemann solver.

One great usability improvement would be to make the code more modular, and
make it possible to construct the full algorithm from different schemes, perhaps even
during run-time. Another important feature is the equation of state input. Currently
only a parametrization is supported, but a table lookup support is also planned.
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Appendix A

Source code

The whole software project is the result of a collaborative work of the hydro research
group at Warsaw University of Technology. It is based on a previous work by Daniel
Kikoła et al. [33]. The project is kept in a shared git repository, which can be used to
quantify (extremely roughly!) author’s amount of work on the code: added lines: 7745,
removed lines: 3901, with the main version codebase totaling to just over 5000 lines of
code.

Below is the function weno7 attached, taken verbatim from the code. It returns the
interpolated value between fc and fn. Thanks to class features that are available in
Cuda code, all algorithmic code is just as clear and easy to read and write.
__device__ U weno7 (U fppp , U fpp , U fp , U fc , U fn , U fnn , U fnnn )
{

REAL g1 , g2 , g3 , g4 , eps = 1e−6;

U f1 , f2 , f3 , f4 ,
b1 , b2 , b3 , b4 ,
w1 , w2 , w3 , w4 , w1a , w2a , w3a , w4a , ws ;

f 1 = −0.25 ∗ fppp
+ 13 .0/12 . 0 ∗ fpp
− 23 . 0/12 . 0 ∗ fp
+ 25 .0/12 . 0 ∗ f c ;

f 2 = 1 . 0/12 . 0 ∗ fpp
− 5 . 0/12 . 0 ∗ fp
+ 13 .0/12 . 0 ∗ f c
+ 0 .25 ∗ fn ;

f 3 = −1.0/12.0 ∗ fp
+ 7 . 0/12 . 0 ∗ f c
+ 7 . 0/12 . 0 ∗ fn
− 1 . 0/12 . 0 ∗ fnn ;
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f 4 = 0 .25 ∗ f c
+ 13 . 0/12 . 0 ∗ fn
− 5 . 0/12 . 0 ∗ fnn
+ 1 .0/12 . 0 ∗ fnnn ;

g1 = 1 . 0 / 3 5 . 0 ;
g2 = 1 2 . 0 / 3 5 . 0 ;
g3 = 1 8 . 0 / 3 5 . 0 ;
g4 = 4 . 0 / 3 5 . 0 ;

b1 = fppp ∗ (547∗ fppp − 3882∗ fpp + 4642∗ fp − 1854∗ f c )
+ fpp ∗ (7043∗ fpp − 17246∗ fp + 7042∗ f c )
+ fp ∗ (11003∗ fp − 9402∗ f c ) + 2107∗ f c ∗ f c ;

b2 = fpp ∗ (267∗ fpp − 1642∗ fp + 1602∗ f c − 494∗ fn )
+ fp ∗ (2843∗ fp − 5966∗ f c + 1922∗ fn )
+ f c ∗ (3443∗ f c − 2522∗ fn )
+ 547∗ fn ∗ fn ;

b3 = fp ∗ (547∗ fp − 2522∗ f c + 1922∗ fn − 494∗ fnn )
+ f c ∗ (3443∗ f c − 5966∗ fn + 1602∗ fnn )
+ fn ∗ (2843∗ fn − 1642∗ fnn ) + 267∗ fnn∗ fnn ;

b4 = f c ∗ (2107∗ f c − 9402∗ fn + 7042∗ fnn − 1854∗ fnnn )
+ fn ∗ (11003∗ fn − 17246∗ fnn + 4642∗ fnnn )
+ fnn ∗ (7043∗ fnn − 3882∗ fnnn )
+ 547∗ fnnn∗ fnnn ;

w1a = eps + b1 ;
w1a = g1 / (w1a∗w1a ) ;

w2a = eps + b2 ;
w2a = g2 / (w2a∗w2a ) ;

w3a = eps + b3 ;
w3a = g3 / (w3a∗w3a ) ;

w4a = eps + b4 ;
w4a = g4 / (w4a∗w4a ) ;

ws = w1a + w2a + w3a + w4a ;

w1 = w1a/ws ;
w2 = w2a/ws ;
w3 = w3a/ws ;
w4 = w4a/ws ;

return w1∗ f 1 + w2∗ f 2 + w3∗ f 3 + w4∗ f 4 ;
}
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Appendix B

Jacobian

The Jacobian could be useful for implementing other time stepping schemes, or for a
proper flux splitting and transformation to characteristic variables.

The total flux is given by:

~F =

 (E + p)~v
~M~v + pI
R~v

 (B.1)

We can calculate the Jacobian of the total flux

∂ ~F

∂(E, ~M,R)
=


∂~v
∂E

(E + p) + ~v
(
1 + ∂p

∂E

)
∂~v

∂ ~M
(E + p) + ~v ∂p

∂ ~M

∂~v
∂R

(E + p) + ~v ∂p
∂R

~M ∂~v
∂E

+ ∂p
∂E

I ~M ∂~v

∂ ~M
+
(
~v + ∂p

∂ ~M

)
I ~M ∂~v

∂R
+ ∂p

∂R
I

R ∂~v
∂E

R ∂~v

∂ ~M
R ∂~v
∂R

+ ~v


(B.2)

To get derivatives of ~v and p, we can use the relation

v = M

E + p
(
E −Mv,R

√
1− v2

) (B.3)

and differentiate it w.r.t. our variables

∂v

∂E
= −

M
(
∂p
∂E

+ 1
)

(E + p)2 (B.4)

for pressure use the chain rule
∂p

∂E
= ∂p

∂e

(
1−M ∂v

∂E

)
− ∂p

∂n

v ∂v
∂E
R√

1− v2
(B.5)

Solving the system of equations B.4 and B.5, we get the derivative of velocity

∂v

∂E
=

(
∂p
∂e

+ 1
)
v2√1− v2

∂p
∂n
v3R +

√
1− v2M

(
∂p
∂e
v2 − 1

) (B.6)
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and pressure
∂p

∂E
= −

∂p
∂n
v3R +

√
1− v2 ∂p

∂e
(v2 + 1)M

∂p
∂n
v3R +

√
1− v2

(
∂p
∂e
v2 − 1

)
M

(B.7)

Similiar procedure can give us rest of the derivatives

∂v

∂Mi

= −
√

1− v2vi
(
∂p
∂e
v2 + 1

)
∂p
∂n
v3R +

√
1− v2

(
∂p
∂e
v2 − 1

)
M

(B.8)

∂p

∂Mi

=
vi
(
∂p
∂n
vR + 2∂p

∂e

√
1− v2M

)
∂p
∂n
v3R +

√
1− v2

(
∂p
∂e
v2 − 1

)
M

(B.9)

∂v

∂R
= −

∂p
∂n
v2(v2 − 1)

∂p
∂n
v3R +

√
1− v2

(
∂p
∂e
v2 − 1

)
M

(B.10)

∂p

∂R
=

∂p
∂n

(v2 − 1)M
∂p
∂n
v3R +

√
1− v2

(
∂p
∂e
v2 − 1

)
M

(B.11)

In order to get derivatives of velocity components the following relation can be used

vi = Mi

M
v (B.12)

Note that to compute the Jacobian, partial derivatives of pressure are needed. These
could be either computed numerically, or given as input.

An explicit expression for the Jacobian is quite verbose and will be omitted. Below
a Maxima worksheet that computes all the derivatives and the explicit Jacobian is
attached.

(%i1) load("lrats")$
load("vect");

(%i3) depends(v, [E,Mi,R]); depends(M, Mi);

(%i5) e : E - M*v; n : R*sqrt(1-v^2);

E derivatives

(%i7) vE_soln0 : [diff(v,E) = diff(M/(E+p(e, n)),E)];

(%i8) pE_soln0 : [diff(p(e,n),E) = pe*diff(e,E) + pn*diff(n,E)];

(%i9) vE_soln1 : ratsimp(solve(subst(pE_soln0, vE_soln0), diff(v,E)));
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(%i10) vE_soln2 : ratsubst(M/v, p(e,n)+E, vE_soln1);

(%i11) pE_soln1 : combine(rat(subst(vE_soln2, pE_soln0)));

M derivatives

(%i12) vMi_soln0 : [diff(v,Mi) = diff(M/(E+p(e, n)),Mi)];

(%i13) pMi_soln0 : [diff(p(e,n),Mi) = pe * diff(e,Mi) + pn*diff(n,Mi)];

(%i14) MMi_soln : [diff(M,Mi) = Mi/M];

(%i15) vMi_soln1 : ratsimp(solve(subst(MMi_soln,subst(pMi_soln0, vMi_soln0)), diff(v,Mi)));

(%i16) vMi_soln2 : ratsubst(M/v, p(e,n)+E, vMi_soln1);

(%i17) pMi_soln1 : combine(rat(subst(MMi_soln, subst(vMi_soln2, pMi_soln0))));

R derivatives

(%i18) vR_soln0 : [diff(v,R) = diff(M/(E+p(e, n)),R)];

(%i19) pR_soln0 : [diff(p(e,n),R) = pe * diff(e,R) + pn*diff(n,R)];

(%i20) vR_soln1 : ratsubst(M/v, p(e,n)+E,solve(subst(pR_soln0, vR_soln0),diff(v,R)));

(%i21) pR_soln1 : ratsimp(factor(subst(vR_soln1, pR_soln0)));

Jacobian

(%i22) depends(v,[E,Mx,My,Mz,R]); depends(M, [Mx, My, Mz]);

(%i24) F0 : [(E+p(e,n))*vx, Mx*vx+p(e,n), My*vx, Mz*vx, R*vx];
G0 : [(E+p(e,n))*vy, Mx*vy, My*vy+p(e,n), Mz*vy, R*vy];
H0 : [(E+p(e,n))*vz, Mx*vz, My*vz, Mz*vz+p(e,n), R*vz];

(%i27) vi_solns : [vx = Mx/M*v, vy = My/M*v, vz = Mz/M*v];

(%i28) F1 : subst(vi_solns, F0);
G1 : subst(vi_solns, F0);
H1 : subst(vi_solns, F0);
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(%i31) U : [E, Mx, My, Mz, R];

(%i32) subs : append( pR_soln1, vR_soln1, pE_soln1, vE_soln2,
subst([Mi=Mx], pMi_soln1),subst([Mi=My], pMi_soln1),subst([Mi=Mz], pMi_soln1),
subst([Mi=Mx], vMi_soln2),subst([Mi=My], vMi_soln2),subst([Mi=Mz], vMi_soln2),
subst([Mi=Mx], MMi_soln), subst([Mi=My], MMi_soln),subst([Mi=Mz], MMi_soln));

(%i37) J : combine(rat(subst(subs, [jacobian(F1, U), jacobian(G1, U), jacobian(H1, U)])));
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